

GCSE **Physics**

8463/1H Paper 1 Higher Tier

Report on the Examination

8463 June 2024

Version: 1.0

Further copies of this Report are available from aqa.org.uk	
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.	

General

Grade 4-5 calculation questions ask for students to recall an equation first before using it in a subsequent calculation, however in the 2024 series, students were given a Physics Equations Sheet which had all the equations printed on it. Subsequently, the performance on straightforward calculations has improved compared with years when equations have needed to be recalled from memory.

The grade 8-9 multistep calculations, question **05.5** and **06.2**, were well attempted. Question **05.5** had 18% of students scoring 5 marks, while question **06.2** had 14% of students scoring 6 marks.

Question **03.1** was well attempted and students who had carried out the resistance of a wire required practical would have had a material advantage over those who hadn't. For this question, 44% of students scored 5 or 6 marks and 37% of students scored 3 or 4 marks.

Handwriting continues to be a problem for a number of students, making it very difficult for examiners to read what has been written. An increasing number of students are using computers to word process their answers for extended response questions, which is helpful for examiners in awarding credit for student responses. However, students must use the question number as printed in the question paper eg 4.3 rather than 4(c) to ensure that their work is marked with the corresponding question part.

Levels of demand

Questions are set at three levels of demand for this paper:

- **Standard demand** questions are designed to broadly target grades 4–5.
- **Standard/high demand** questions are designed to broadly target grades 6–7.
- **High demand** questions are designed to broadly target grades 8–9.

A student's final grade, however, is based on their attainment across the qualification as a whole, not just on questions that may have been targeted at the level at which they are working.

Question 1 (Standard Demand)

- 98% of students scored this mark, identifying the energy store which increases when water is heated.
- 93% of students scored this mark. Some incorrect answers seen were 'method A' or 'method B' students thinking they were linking a method to the energy transfer. Another common answer was 'hydroelectric energy' which didn't score. The word 'potential' was needed for an answer of 'gravitational potential.' As the question was worded it seemed reasonable to credit 'kinetic' since the water moving uphill would have kinetic energy before it reached its destination and stored only gravitational potential energy.

- 01.3 55% of students scored 4 marks. Some students failed to realise that the calculations needed were to show the amount of stored energy wasted or the amount of stored energy usefully transferred. Simple subtractions were insufficient to score the calculation marks. To score 4 marks, two comparisons were needed in addition to a comparative calculation. Although the comparative calculation performed by a minority of students involved dividing 33 600 kJ by 490 kJ and getting an answer of 68.6, which is the number of times more energy stored by method A compared to B. This single calculation was enough to score 4 marks with the two simple comparisons. The installation comparison only scored if value was added to the information eg Method A is easier to install or is likely to cost less money.
- O1.4 To score marks for this question, students needed to say what activity should be stopped (or reduced) and what should be done instead for both transport and electricity generation. At its simplest this could be use electric cars instead of petrol cars and use renewable methods instead of fossil fuels to generate electricity. As well as the examples on the mark scheme other valid methods were also creditworthy: car sharing, for example, or limiting the distance that goods could be shipped across country. 39% of students scored 4 marks, while 35% of students scored 3 marks.

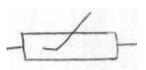
Question 2 (Standard Demand)

- **02.1** A sentence completion question about nuclear fission which discriminated well between students. 72 % of students scored 3 marks, 21% scored 2 marks and 5% scored 1 mark.
- 99.5% of students scored the mark for writing down the correct equation. However, in this exam series all equations were provided for the students on the Physics Equations Sheet.
- **02.3** A standard demand calculation of energy question. 48% of students scored 3 marks, while 41% of students scored 2 marks. Not converting or incorrectly converting the unit will have allowed many students to only score 2 marks.
- 44% of students scored a mark. 'Wear protective clothing' or 'hazmat suits' were common incorrect answers. Any idea of 'burying it' was credited, so 'bury it in a field' was ok, as was 'bury it in landfill,' which from a student's perspective is equivalent to burying it underground. 'Keeping it away from people' was insufficient.
- 96% of students scored 2 marks. The answer of 29.2 days was worth 1 mark as this could only have been calculated by doing the correct calculation and then subtracting the result from 365.

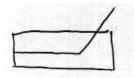
Question 3 (Standard/High Demand)

- O3.1 Students who had completed the investigation found this question straightforward, especially as the circuit was shown in a photo. It was not necessary for the circuit connections to be described. The mean mark for the question was 4 marks. 44% of students scored 5 or 6 marks, while 37% of students scored 3 or 4 marks.
- **03.2** 83% of students identified the graph showing the relationship between length of wire and resistance.

28% of students scored 2 marks, while 50% scored 1 mark. The converse of 'low p.d.' was the bare minimum to score the first mark, so 'not a high p.d.' was taken to mean the p.d. was low. Similarly, 'not enough to give you a shock' and 'not enough to electrocute you' were creditworthy for the second mark.


Question 4 (Standard/High Demand)

- O4.1 Students answers were generally very confused with this question and statements about transfer of positive electrons or protons or even neutrons were commonly seen. Students struggled to understand that when you are in contact with a charged object you have the same charge as that object. It was common to see statements about the dome being negative so the student (and her hair) are positively charged. If a student said that the student was positively charged they could not score mark points 1 and 2, but they could still score mark point 3 if they said that like / same charges repel. 10% of students scored 3 marks, while 15% scored 2 marks and 32% scored 1 mark.
- Only 8% of students scored a mark on this question. An answer of 'the area / space / region where an electron experiences a force' was creditworthy as were other examples of charged particles or ions. 'The area where other charged particles experience repulsion or attraction' was also creditworthy. Neither of these examples were seen often, however.
- 92% scored a mark for this question. A surprisingly large number of students made statements like 'as you get closer to the dome, the field strength increases' answering the question in the opposite way to the way it was set out. They scored a mark but would have saved a lot of time by writing 'it decreases.'
- O4.4 Some students did not convert, or incorrectly converted, the unit of charge and scored 3 marks.. Some students incorrectly converted the unit for charge and also spuriously converted the energy by multiplying or dividing by a power of ten. These students made two mistakes, so scored a maximum of 2 marks on this question. 36% of students scored all 4 marks, while 56% of students scored 3 marks for this calculation of potential difference.
- **04.5** 80% of students identified the factor that would increase the distance a spark can jump between two objects.


Question 5 (Standard/High Demand)

- 72% of students scored 2 marks, while 15% of students scored 1 mark. A number of students thought mains p.d. was 240 V. It was officially changed to 230 V in 1987 and this is the value given in the specification. However, it was more common for students to get the p.d. correct and the frequency incorrect.
- **05.2** A grade 6-7 calculation of resistance, which discriminated well between students. The conversion of milliwatts to watts proved a problem for the vast majority of students. 53% scored all 4 marks, while 36% scored 3 marks.

- **05.3** 64% of students scored a mark for suggesting why dirty coins are not recognised by the machine. Answers which were insufficient, but ignored, included 'Can't measure resistance' and 'Dirt is an insulator'...
- **05.4** 63% of students scored a mark for drawing the thermistor symbol. Answers that were not acceptable included the following examples.

05.5 This grade 8-9 calculation, worth 5 marks, question discriminated well between students of different abilities. If a student did not calculate the total resistance and then use that value to calculate the current in the circuit, then they didn't score the first 3 marks. If a student calculated the current in the circuit using just the 400 Ω resistor, then they could use that value to score the 4th and 5th marks for the calculation of the p.d. across the thermistor, using V = IR. Answers with a p.d. greater 12 V usually scored zero marks, due to fundamental Physics errors. 18% of students scored 5 marks, while 31% of students scored 2 marks. 46% of students scored 0 marks. In this exam series all equations were provided for the students on the Physics Equations Sheet.

Question 6 (High Demand)

- 90% of students scored this mark, for identifying that the elastic potential energy store increases as the bungee cords are stretched.
- A challenging grade 8-9 calculation question. A common incorrect answer was '10' which scored 5 marks because the only mistake the student made was not doubling the elastic potential energy calculated for one bungee cord. Due to the various ways students approached the question it discriminated well between different abilities. 14% of students scored 6 marks, while 34% scored 5 marks and 28% scored 4 marks. As long as a student had used the elastic potential energy equation calculating a value of $E_{\rm e}$ using a value of $E_{\rm e}$ they could score the marks for using the $E_{\rm p}$ equation.
- **06.3** 12% of students scored 2 marks, while 46% of students scored 1 mark, in this question for identifying the ways in which energy was dissipated.

Question 7 (Standard/High Demand)

- **07.1** 52% of students scored this mark. The question states that the student's eye is not in line with the level of the water. The position of the eye is likely to remain in the same (incorrect) position as the water level changes when the ring is inserted. This will cause a random error as both volume measurements will be incorrect, but not by the same amount.
- **07.2** 63% of students scored this mark. Additional mass or absorbing extra water were ignored. The answer needed to make a comparison, rather than just state that 'volume of string affects the measurement of volume.'

- 07.3 33% of students scored the mark for this question about resolution. Comments on low / high resolution were insufficient to score. Statements needed to refer to the resolution value itself or the number of decimal places the measurement could be read to. As measuring cylinders often have large gaps between markings, a statement that the resolution was 0.1 cm³ was allowed.
- **07.4** 71% of students scored a mark for this question about zero error. Common incorrect answers said, 'take repeat readings and calculate a mean.'
- **07.5** A grade 6-7 calculation question, but the unit conversion made this question more difficult than other similar calculations in the exam, with only 33% of students scoring all 4 marks. 57% of students scored 3 marks.

Question 8 (High Demand)

- Questions about the microscopic causes of pressure are difficult for GCSE students and this question was no exception. Many students repeated information given in the question which did not score any marks. A minority of students scored the first mark point, many students simply stating that the volume decreased which was insufficient. Students made a good attempt at explaining that there were more collisions between the particles and the container walls, but failed to score because they didn't refer to a specified time period e.g. per second, or rate or more frequent, etc. Some students stated that the kinetic energy of the particles had increased, which stopped them from scoring the second mark point. Very few students scored the third mark point which was the most demanding of the three. 9% of students scored 2 or 3 marks, while 43% of students scored 1 mark.
- **08.2** 94% of students scored this mark, linking temperature increase to mean kinetic energy of particles.
- **08.3** A grade 6-7 calculation question which discriminated well between students. Many students failed to convert the specific heat capacity so scored 3 marks instead of 4. Some students tried to convert the energy into kJ but very few did this successfully, usually ending with a 'power of 10' error. 22% of students scored 3 marks while 62% of students scored 4 marks.

Question 9 (High Demand)

- **09.1** Students needed to refer to the graph, and factual recall about alpha radiation, to score the 1st and 3rd mark points.,. The 2nd mark point was much more unlikely to score, as students often stated the graph went to zero, rather than being just above zero. A number of students confused the graph with a half-life graph, believing the *x*-axis showed time, not distance. 8% of students scored 3 marks, while 45% scored 2 marks and 35% scored 1 mark.
- **09.2** A lot of students thought it was enough to say 'an absorbing material' without specifying what the absorbing material should be made from. Any suitable absorbing material was creditworthy, a block of wood for example. However, reference to any metal foil was not creditworthy unless students referred to a certain thickness eg 5 mm thick aluminium foil. A 'foil' was taken to be the same thickness as kitchen foil, whereas a 'metal sheet' was taken to be thick enough to absorb

beta radiation, provided students did not contradict their earlier statements. Paper and cardboard were not creditworthy as suitable absorbing materials. 51% of students scored 2 marks, while 7% of students scored 1 mark.

- **09.3** 65% of students scored this mark by suggesting a suitable safety precaution. Hazmat suits and PPE were insufficient to score.
- **09.4** 64% of students scored this mark by suggesting a suitable precaution to avoid contamination. Hazmat suits and PPE were insufficient to score.
- **09.5** Students at GCSE find the idea of rate of change to be a difficult one, hence linking the change in the number of atoms to activity was a difficult question in this exam series. 7% of students scored 4 marks, while 12% of students scored 3 marks. If students failed to draw a tangent, they were very unlikely to score any marks except the unit mark. A common incorrect choice of unit for activity for many students was sieverts, Sv. Examiners were looking for becquerel or Bq. Decays per second or decays/second were insufficient to score.

Question 10 (Standard/High Demand)

- **10.1** 72% of students correctly identified the colour of the live wire insulation.
- 10.2 66% of students scored the mark on this question. Students who made the box for the answer into a fuse symbol did not score the mar nor did a fuse symbol added to any side of the box .
- **10.3** A grade 6-7 calculation of current. 57% of students scored all 4 marks. 36% of students scored 3 marks, usually for incorrectly converting, or not converting, the unit.
- **10.4** A grade 6-7 calculation of mass. 61% of students scored 4 marks. 31% of students scored 3 marks for either incorrectly converting, or not converting, the unit.
- 40% of students scored 2 marks on this question recognising that the time would be longer because more energy in total would need to be transferred. An answer of 'less energy is melting the wire' was just enough to score the second mark. 15% of students scored zero on this question.

 $\hbox{@}$ 2024 AQA and its licensors. All rights reserved.

Mark Ranges and Award of Grades

Grade boundaries and cumulative percentage grades are available on the <u>Results Statistics</u> page of the AQA Website.