OCR B $21^{\text {st }}$ Century Science GCSE Data Sheet

 Combined / Physics

 Combined / Physics}

Equations in bold are for Higher Tier only
Equation highlighted in blue are for Physics only (not Combined)
wave speed = frequency \times wavelength

energy
transferred

efficiency $=\frac{\text { useful energy transferred }}{\text { total energy transferred }}$

power $=$ energy $/$ time
energy
transferred $=$ charge \times potential difference
power $=$ potential difference \times current
power $=$ current $^{2} \times$ resistance
potential
$\begin{gathered}\underset{\text { difference across }}{\text { current in }} \\ \text { primary coil }\end{gathered}=\underset{\text { primary coil }}{\text { difference across }} \begin{aligned} & \text { secondary coil }\end{aligned} \underset{\text { current in }}{\text { secondary coil }}$
force $=\underset{\text { flux density }}{\text { magnetic }} \times$ current $x \begin{aligned} & \text { length of } \\ & \text { conductor }\end{aligned}$

\square
difference $=$ work done / charge

\[\)| magnetic |
| :---: |
| force |
| flux density |$\times \text { current } x$| length of |
| :--- |
| conductor |

\]

$\frac{\text { potential difference across primary coil }}{\text { potential difference across secondary coil }}=\frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }}$

```
        weight = mass }\times\mathrm{ gravitational field strength
average speed = distance / time
    acceleration = change in speed / time taken
(final speed)}\mp@subsup{)}{}{2}-(\mathrm{ (initial speed)}\mp@subsup{)}{}{2}=2\times\mathrm{ acceleration }\times\mathrm{ distance
momentum = mass x velocity
    change in = resultant force }\textrm{x}\mathrm{ time for which it acts
momentum
```

moment of
a force
:---:
direction of the force)

force $=$ mass \times acceleration
work done $=$ force x distance (along the line of action of the force)
kinetic energy $=1 / 2 \times$ mass \times speed 2
gravitational
gravitational
potential energy $=$ mass $\times \underset{\text { field strength }}{\text { graviat }}$
density = mass / volume
$\begin{gathered}\text { change in } \\ \text { internal energy }\end{gathered}=$ mass $x \underset{\text { specific heat }}{\text { capacity }} \times \begin{gathered}\text { change in } \\ \text { temperature }\end{gathered}$
energy to cause
a change of state
$=$ mass \times specific latent heat
$\begin{aligned} & \text { force exerted } \\ & \text { by a spring }\end{aligned}=$ spring constant \times extension
energy stored in a stretched spring
$=1 / 2 \times$ spring constant \times extension ${ }^{2}$
pressure $=$ force normal to surface / area of surface
pressure x volume $=$ constant (for a gas)
pressure $=$ density \times gravitational
x depth

